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1.0 INTRODUCTION

A considerable amount of theoretical and numerical analysis has been

published recently in the general area of unsteady flows and, in

particular, on unsteady transonic flows. However, at the same time there

is a shortage of experimental results [1). The capabilities of ground

test facilities have actually been surpassed by analytical and computa-

tional methods in many areas of unsteady aerodynamics. One reason is the

inherent problem of obtaining detailed measurements about a moving model.

However, a large class of unsteady flow experiments can be conducted with

stationary models when a controlled oscillatory flow is generated in the

test section. These so called gust tunnels have demonstrated the

potential of providing valuable aerodynamic data [2].

Unfortunately, with few exceptions [3), all existing gust tunnels are

small, low speed facilities. Recently, however, a new concept termed the

"Ball Wall" has been used to introduce oscillations in the transverse

velocity over a wide range of speeds [4]. The new concept utilizes

a temporal variation of the test section wall porosity to produce a fre-

quency range of flow perturbations within the test section that is unique

relative to other gust tunnels. Measureable flow angularity oscillations

were generated at frequencies from quasi-steady to 50 Hz in tunnel (4T) at

the Arnold Engineering Development Center [4].

Having demonstrated the experimental capability of producing a con-

trolled oscillatory flow from subsonic incompressible to the transonic

flow regime, a serious question arose concerning the dynamic similarity

due to an oscillating flow as opposed to an oscillating model of equal

frequency and amplitude. Specifically, the question is: is the velocity
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distribution in the neighborhood of the model and the resulting normal and

shear stress distribution equivalent when the free stream contains a

periodic transverse oscillation which is equal in magnitude to transverse

model oscillation?

It is well known (5) that for compressible flow the two problems of

fixed bodies in oscillating flows and oscillation bodies in steady uniform

flows are not equivalent. The discrepancy is due to the inertia term in-

* troduced in the boundary layer equations when transforming from the fixed

to the oscillating coordinate system. Thus, the boundary layer equations

are different,and as expected the near field velocity distribution is not

equivalent for the two cases.

A common misconception is that for incompressible flows the two prob-

lems are always equivalent, although for certain in-plane oscillations

equivalent surface stress distributions are produced. One example of

equivalent transverse oscillations is the two-dimensional stagnation point

flow generated by an infinite flat plate. A uniform flow, U., approaching

a plane wall which oscillates with velocity, VP, given by Vp = Vo cos Wt

produces the equivalent wall shear stress distribution as that of a fixed

wall which sees a uniform flow with an equivalent transverse component

which is ly out of phase. These two problems were first investigated by

Glauert [61 and the kinematic and geometric similarity which produces the

equivalent dynamic effects is physically obvious. In fact a simple

coordinate transformation from one fixed in space to one fixed to the

stagnation point demonstrates the equivalence [6].

Now consider the two distinct problems of a right circular cylinder

undergoing small transverse oscillations in a steady uniform flow and what

appears to be the similar problem of a stationary cylinder subjected to a
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steady uniform flow which contains the equivalent transverse oscillations,

i.e. equal frequency and magnitude. For the idealized situation all

points in the flow field have the same vertical oscillation, which is

different from the so-called gust problem where a periodic component is

convected down stream. The gust condition may be a more realistic model

for the conditions created in some wind tunnels, however it is obvious

that the flow field for this condition is not even kinematically similar

to the case of an oscillating cylinder.

If the potential flow field due to a steady uniform form, U , plus a

small transverse oscillating component, given by V0 cos Wt is solved, the

resulting surface velocity for an(r,e) coordinate system fixed to the

cylinder is K

Ve(R,e,t) = -2U Sin e - 2V° Coswt Cos e.

The stagnation point is then displaced through maximum angle given byVo
Tan *(P *Ta S.P. =  --

Now consider the corresponding potential flow problem of a uniform

steady flow approaching a cylinder undergoing a vertical oscillation of

identical frequency and amplitude but with a 1800 phase difference. Solv-

ing this problem by an analysis similar to that of G. I. Taylor [7], the

resulting surface velocity is given by

ve(R,e,t) = 2U Sin a - V0 Coswt Cos e.

It is seen that the unsteady part of v (R,e,t) is different and in fact
e

the maximum stagnation point excursion is exactly one-half that of the

first case. It then follows that the surface shear stress distribution

will also be different, and in the linearized case of small transverse
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oscillations is one-half that of the first case. The reason for the

factor of two discrepancy is due to the physical difference in the two

flow fields. In the first problem, the entire flow field oscillates in

time and the presence of the cylinder is essentially ignored. There is no

circulation and the flow is symmetric about the dividing streamline, a

condition which closely approximates the quasi-steady viscous problem. In

the second case the flow field is basically steady, and the unsteady

effects are limited to a small region around the cylinder, known as the

added mass region. An observer fixed on the cylinder sees a negative

velocity, Vo l at infinity, however as the particles approach the cylinder,

they experience a slowly increasing positive velocity field. The net

effect is to produce an asymmetric flow and a stagnation point deflection

of one-half that of the first case.

From this example, even when all points in the flow field contain a

spatially uniform and instantaneously oscillating transverse component, it

is seen that there is a difference in the near field fluid mechanics. The

differences can become more pronounced,when in fact the spatial distribu-

tion is not quite uniform. This is in fact what occurs near the beginning

of the porous wall region, especially when the freestream velocity is

large [4] and the length of the porous wall is of the same order as the

model.

Having gained some physical insight into the subtle differences of

the two unsteady problems, i.e. oscillation flow fields vs. oscillating

bodies, during the AFOSR Summer Rearch Pvegrem, it was decided to

study the unsteady fluid dynamics around a restricted class of airfoils.

Specifically, the investigation is limited to airfoils having small thick-
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ness ratios so that thin airfoil theory can be employed. This leads to

considerable simplications in the unsteady potential flow analysis and

the subsequent numerical integration of the boundary layer equations.
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2.0 MATHEMICAL FORMULATION

The basic problem considercd in this investigation is an unsteady

laminar incompressible flow over a two-dimensional thin airfoil. The

concept of a thin airfoil as used in this analysis implies that t/b <<1

as shown in Figure 1. This implies that the mean chord of the airfoil

lies along the X axis to within 01], where =_ a/b and a/t = Oil]. This

implies that disturbances to the free stream flow generated by the air-

foil are O[E]. This formulation has distinct mathematical advantages

which will be explored in the following analysis. First, it allows for

an analytical solution to the potential flow field to within O[£2]. And

secondly,it permits a very accurate and stable hybrid numerical scheme to

be employed for the solution of the boundary layer equations. Although

the thin airfoil approximation limits the physical application of the

analysis, its simplicity allows for both physical insight into the un-

steady efforts, and provides a valuable base line analysis for comparison

to subsequent studies which can include airfoil thickness, camber, and

angle of attack.

Specifically, the purpose of this analysis is to compare the effects

of two distinct unsteady flows under the thin airfoil approximation.

First, a uniform free stream approaches the airfoil which is undergoing a

periodic transverse oscillation with respect to the x-y axis of amplitude

a and frequency w as shown in Figure 2a. And secondly, a uniform flow

plus a periodic transverse component approach the same airfoil which is

now fixed with respect to the X-y axis. This part of the analysis is suf-

ficiently general so that any spatial distribution in the transverse com-

ponent capable of beign represented by a Fourier series can be consider-
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ed. For both conditions the amplitude of the oscillation is "small",

i.e., a/b << 1. This implies that both the airfoil geometry and the

unsteady effect will appear first in the 0[c] equations.

2.1 Potential Flow Formulation

In addition to the previous restrictions, the fluid will be assumed

inviscid in this section. This is reasonable under thin airfoil theory,

since without separation the viscous effects are confined to the boundary

layer and the effect of viscosity can be incorporated by a phenomenologi-

cal rule that the velocity at the trailing edge must remain finite and tangent

to the airfoil surface. Finally, in addition to the inviscid assumption,

the fluid will be taken as piezotropic, i.e., p = p(p) only.

The equations will be formulated in terms of the acceleration

potential, ', of the flow field. This approach is selected because ¢ is

continuous throughout the idealized wake in thin airfoil theory whereas

the usual velocity potential is discontinuous. A detailed discussion

of the derivation of the equations can be found in Ref. [8]. In this sec-

tion, we simply note that the relavent equations are Euler's equation

written as

= _ V LP (1)
P0

and, the acceleration potential definition is given by

T_ =(2)

* Substituting equation (2) into (1) and integrating with respect to space

yields

8
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P[ P0 + - constant (3)

P0

Further simplifications plus a discussion of the boundary conditions will

be made in Section 2.3.

2.2. Boundary Layer Formulation

The two dimensional, incompressible, unsteady, laminar boundary layer

equations in terms of the stream function are

2- aw 2 3DO a a2 4, 2 1 _p + (4)

atay ay axay ax ay ax ay3

where u and v -

ay3 ax

The unsteady pressure gradient is given by

}paUe aUe
ap = ae + U au (5)
Px at e ax

Adopting the usual body coordinate system shown in Figure 3, the

boundary conditions become

a - a -0 at y = 0 (6a,b)
ay ax

and

2 U (x,t) as y * (6c)
ay e

In equation (6c), Ue (x,t) represents the velocity at the edge of the

boundary layer which will be determined from the potential flow solution.

2.3. Nondimensionalization and Perturbation Equations

Outside the leading edge region, two important length scales

9
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characterize the unsteady boundary layer. They are 6 and 6BI where

6 S - (/)/2 and 6B - (vx/U) I/2. If no steady flow is present,

the fluctuating part of the flow extends a distaance6I away from the sur-

face. When a steady flow is superimposed, the two layers interact and

the resulting flow can be quite complicated when the two layers are of

comparable magnitude, i.e. _x = 0[l]. However, under certain restric-
U.

tions the mathematical analysis can be dramatically simplified. This

occurs if we restrict the magnitude of the transverse oscillating com-

ponent, V0 , such that V0/U. << 1. This does not limit the analysis

since, by definition of the problem, V is less than about 10% of the

free stream velocity due to physical limitations of the wind tunnel.

Referring to Figure 2, we see that Vo - wa, thus wa/U << 1. This can be

written as (wb/U®)c << 1, where E E a/b. This implies wb/U. = 0[11 or

equivalently wx/U. = 0[l] except near the leading edge of the airfoil.

However by definition, the boundary layer analysis excludes this region,

thus we conclude wx/U = O[l].

The parameter Ob has a special significant, consequently we let

2bw/U., and a = 0 [1] implies that the two layers are of comparable

magnitude, and either 6s or B are acceptable length scales. However,

since c - 0 implies the oscillatory component vanishes, 6B is more

appropriate. Accordingly the following nondimensional variables and

parameters are selected for the boundary layer phase of the analysis.

b u 1/2 ' '

P u 1/el 2-- v R (7)
- P ,7- e

10
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2bU- 2bw a (7)e v(2bvU)I -® '1

Substituting equations (7) into equation (4) yields

a2-; 2- - 2- a3-

a "an an acan 5C 7 - 5 (8)an an

where

a- au
e (9) _

a 3T e at 9

with the following boundary conditions.

= at n =0 (lOa,b)

an U e as (lOc)an e

From the physical description of the problem, it is reasonable to

expect that both the edge velocity, Ue, and the pressure gradient calcu-

lated from potential flow theory can be expressed as

2Uelc~t) = 0o + C01(c,T) + O[E 1 (11)

and 2
+ cP1 ( ,T) + O[€2] (12)

It then follows that the stream function can be written as

(o(C,n; ) + £Vl(C,n,T;1) + O[E 2 ]  (13)

11



Substituting equation (13) into the stream function equation yields the

following two equations.

a a2;- 2- 3ko ao a Po a 2o 3P - aP (14)an aca n a¢ 7 n2  -T- a'c
an an

and

-2- 2- 2 3-
a1 41  - a1 1I- "a1a ..

+ f a+ o, ~ 2  O,nn 54

(15)

In equation (15) the notation = aIo/an is adopted for simplicity.

The corresponding set of boundary conditions become

a11o  a~o
0- 0 at n = 0 (16a,b)

an an

TT + U as n (16c)

an 0

and

- = 0 at n 0 (17a,b)

U1  as n (17c)San 1

In the potential flow region, the characteristic length scale for

both X and Y is simply one-half the airfoil chord, b. The velocity scale

is the free stream velocity, U. The time and acceleration potential areI
nondimensionalized by b/.U. and U 2 respectively. All other nondimensional

1.. variables are unchanged. The linearized potential flow equations can now

be easily formulated by again expanding the nondimensional pressure, den-

sity and acceleration potential in terms of . Substituting these

12



expansions into equation (8) yields

dP d-1  p+

o+ I1 + [O ]  + -2  [l - ( + O[ 2 1 (18)

0 0  o 01

Thus,

(o = constant, for P = constant; and l -P/Po

The linearized field equations can also be easily obtained. First,

Eulers equation becomes

aul _ 1 olI Ir DP
1- and I - I (19a,b)

at Po aX at ay

2
where the convective acceleration terms are O(2]. Similarly, the

continuity equation becomes

- (ac+ av 0p (0o (-+ -- ) + = (20)
ax aY at

Equations (19) and (20) can be combined to yield

l 2P1

V2P 1 0 (21)
1 a' at

For an incompressible fluid the speed of sound, a, approaches

infinity and the linearized equation becomes

V2 = 0 (22)

where the substitution I = /P was made in equation (22).

13
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Finally, the acceleration components can be linearized as follows:

From equation (2) for two dimensional flow we obtain

al _ _u and - _ L- (23a,b)

ax at ay Dt

Substituting the asymptotic expansion for o and noting that U = U0 +

( , + o(,2) and equating equal powers of yields

a(P _ auI  au1  (24)

ax ax at

Similarly, for ai/aY, we obtain

30av1  a 1
a u0 + (25)

Having formulated the general linearized unsteady equations the solution

for the potential flow region and the boundary layer will be discussed

separately.

[
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3.0 POTENTIAL FLOW SOLUTION

Within the framework of linearized theory, individual solutions may

be superimposed to generate the complete solution. Thus,the flow field of

an oscillating airfoil with "small" but finite thickness and camber can be

obtained by the superposition of an unsteady airfoil of zero thickness and

camber and a steady-state solution for an airfoil of small thickness and

camber. However, in this analysis the characteristics of the two distinct

unsteady effects, i.e., oscillating airfoil vs oscillating free stream,

were of primary interest. For this reason, as a first approximation, it

was decided to look at the steady state component for the airfoil with

zero thickness and camber. This approximation permits closed form

analytical solutions to the potential flow. This provides valuable

physical insight into the role of the bound vorticity and the added mass

effect. In addition, it provides a reference point for further investiga-

tions which can include both small but finite thickness and camber

effects.

3.1 Thin Airfoil Solution

Under these restrictions, the equation describing the unsteady ef-

fects can be written below, where here and in subsequent equations the over-

bar for the nondimensional terms is dropped.
2 2
l 0 (26)

ax2  ay 2

The steady state velocity is independent of X, and the linearized accel-

eration components are given by equations (24) and (25).

Refering to Figure 1, we can write the boundary conditions at the

airfoil surface as

15
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Oh ah ah
S 7 0 3(27)

and

D 2h a2h a2h a2h (28)
a~~ ~ ~ 2U D-T -at 0  + 5t 0- X

where h(X,t) describes the position of the airfoil. In addition to these

conditions we require uI and vI - 0 as (X2 + y2 )I/2 ) , plus *l must be

finite at the trailing edge. This last condition is known as the Kutta-

Joukowski condition. Unfortunately, due to the conformal transformation

the acceleration potential will not be finite at the leading edge. This

singularity and its subsequent elimination will be discussed in Section

3.2.

It is now that the powerful mathematical techniques of potential

theory can be exploited. It is well known that a two dimensional airfoil

can be treated by conformal mapping. Since the linearized boundary condi-

tions are expanded about -1 < X< l and Y = 0, we can map this into a circle

by

Z= (Z +

Z

Thus the boundary conditions in the physical Z plane can be written in theI *

conformal Z plane (see figure 4) as

(r=l, e=Cos xt) = ( (Xo,t) Sine (29)

In addition, the condition at infinity can be written as

lim Real {w) = constant (30)
1Z 1

t 16



where w is the complex acceleration potential given by

w = + ig)1  = f(X 4 iY) (31)
,

In the Z plane, w has the form

w(Z*) _W A + i B (32)
Z +1 z

where A and B are determined from the prescribed motion of the airfoil by

applying the boundary and Kutta conditions.

3.1.1 Vertical Oscillation of Airfoil

For an airfoil undergoing vertical translation oscillations described

by h = a Cos wt, the solution to the acceleration potential is given by

01- {-ik C(k) Tan(Cos- X) + k2 Sin(Cos -l X)}e (33)
PO2

where X = 2c -l (see Figure 3), K = b _ and C(k) = F(k) + iG(k). The
U. 2

function C(k) is known as Theodorsen's function and its value along with

the details of the solution can be found in Ref. [9]. From the defini-

tion of *l we see that the unsteady pressure gradient, which is of

interest in the boundary layer analysis is simply

.P = 2 (34)2 a (1o) (34)

Performing the indicated differentiation, and after lenghty simpli-

fications we obtain the unsteady pressure gradient in boundary layer co-

ordinates given by

/pl _/1G - (2r-)r) - icFle t (35)

3i 4r2/3(010

The corresponding "edge" velocity can then be found from the unsteady

Bernoulli equation in nondimensional boundary layer coordinates given by

17



Equation (9).

At this point, the potential analysis would be complete for the

oscillating airfoil if it were not for the leading edge, i.e. * 0,

singularity which is apparent from equation (35).

3.1.2 Vertical Oscillation of Free Stream

The second unsteady flow field in this investigation is that of a

uniform flow in the X direction plus a small periodic component in the Y

direction as shown in Figure 2b. With coordinates fixed on the airfoil,

the effect of this oscillation in dimensional form can be expressed by

i wtY = h(X)e . The boundary condition on the airfoil surface given by equa-

tion (26) becomes
(h ah (36)

(vl)S o 75

In nondimensional form we have Y = h(X) e , thus

(vl)S : (i a h + dh)eit (37)

The unsteady transverse velocity may contain a spatial nonuniformity

due to the physical limitations of the wind tunnel. In fact it is difficult

to create a uniform transverse oscillating flow at the wind tunnel centerline.

Typical transverse spatial distributions are shown in Figures 6 and 7 and the

physical characteristics are discussed in Section 4.3. For computational

purposes, h(X) is taken to be CosX, which closely approximates the distribu-

tion shown in Figure 6 and represents one of the more nonuniform conditions.

For this distribution, the "upwash" on the airfoil becomes

(vl) S = (1i7 CosX - SinX)e (38)

Again, omitting the details which can be found in Ref. [8) or [ 9), we obtain

18
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the unsteady pressure distribution given by

P1  12a 0 Tan( 2 + 4 1 an Sin(nCos -1x)l (t
n=l

where

a 0  c(k)[P + P - P (40)

a. A ik Pn 1(1
n Pn-I + Pn - T Pn+l n.>1 (4j)

The P n coefficients are defined in terms of the "gust" velocity. Using

the relation (see Figure 4) e = cos-l3, the coefficients are

Po =10 vl(e,t) do (42)

0

P ! vl(et) Cos(no) de, n > 1 (43)Pn IT -

0

From this, the unsteady pressure gradient in boundary layer coordinates

(c,n,f) becomes

{al - 4c a [n Cos(n Cos -1 (2c-l)]}e i' (44)
3/2 /  a n=l n

Equation (44) is the counterpart to equation (39) for an oscillating

airfoil in a steady uniform flow. In fact equation (44) does reduce to

equation (39) if h(x) -a which implies (v) S  i e' . Then Po=

and Pn = 0 for n > 1 which implies a0 = -i C(k) and a a

Since the pressure gradient given by equation (44) can represent

either of the two distinct unsteady flows,'it was used in the boundary con-

dition part of the boundary layer code to calculate the edge velocity

U (,-). A ten point Gausian quadrative scheme was used, and the first

twenty coefficients were calculated. The truncation accuracy of the

series including twenty coefficients insured overall relative accuracy of

10.8 which is more than sufficient for the analysis.
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As expected, the unsteady pressure gradient due to a periodic trans-

verse oscillation convected over a stationary airfoil contains a leadin%

edge singularity. This mathematical singularity must be avoided or re-

moved in some logical manner so that the boundary layer equations can be

integrated. The method selected to accomplish this is discussed in the

next section.

3.2 Leading Edge Solution

Due to the conformal mapping, the pressure gradient has a c -2 singu-

larity at the leading edge and a 4 -1/2 singularity at the trailing edge.

The trailing edge mathematical singularity is convergent, however, the .2

is not. One obvious way of avoiding this difficulty, which is suggested in

Ref. [7] is to simply start the integration at a small distance from the

leading edge at, say 4% chord. Although this does not significantly effect

the unsteady lift calculations, it does produce significant changes in the

boundary layer calculations and hence the unsteady drag. For this reason,

the following method was selected for starting the boundary layer calcula-

tions: It is well known that the leading edge region of a two-dimensional

airfoil can be approximated by the stagnation flow around a right circular

cylinder. Consequently, the flow field at the stagnation point of a

cylinder oscilliating with the same amplitude and frequency as the airfoil

can be used as initial values for both U and dP/dx in the boundary layer
e

calcuations.

For a cylinder oscillating vertically in an inviscid uniform flow, the

appropriate field equation in terms of the stream function is simply

V 4' = (45)

The appropriate boundary condition on the surface in (r,e) coordinates is
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V _ImSf 0  Sin 0 (46)Vr r ae 0

where Yo represents its velocity with respect to (X,Y) as shown in Figure 5.

Following the solution first described by G. I. Taylor [7], the cir-

cumferential velocity at r = R is given by

ve(R,e) = -y Cos e - 2U Sin 6 (47)

Letting 0 = a cos wt, we can easily write the edge velocity, Ue, in bound-

ary layer coordinates as

Ue (x,t) = 2U Sin + aw Cos Sin t (8

x x

At the stagnation point sin x X and equation (48) becomes

Ue(, = 4m 2 -ice (49)

where Equation (49) is nondimensional and m = b/R.

The unsteady pressure gradient can now be found from equation (9) by

expanding both P and Ue in terms of E, which yields

a- I = + Uo "T + U1 a- (50)

Noting from equation (49) that Uo = 4mc and U1 = i O ei  and substituting

into equation (50) yields

P1  c2 ii
- - i 2m)e (51)

The potential flow field is now completely specified by the pressure

gradients given by equations (35) and (44) plus the stagnation point

pressure gradient given by equation (51). It is interesting to compare

equation (35) in the limit as 0 , 0. Looking at the real part of aP/a&
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which represents the added mass effect, i.e. neglecting the bound vorticity

component, we have

dpl O 2
lim Real ( 1 (52)

T his is precisely the real part for the cylinder given by equation (51).

This is to be expected, since the cylinder has no circulation and we see

that the singularity in equation (35) is due to the bound vorticity

component.
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4.0 BOUNDARY LAYER RESULTS

4.1 Thin Airfoil Solution

The solution to the boundary layer outside the leading edge region

through O[E] is given by integrating equations (14) and (15) with the

appropriate boundary conditions and using the results of Section 3.1.

Equation (14) represents the steady flow contribution for an airfoil of zero

thickness and hence zero pressure gradient. This equation can be rewritten

in the usual form by introducing the Blasius similarity variables given by

y and (x,y) fB (n B

(vx/U) vxU) (VxU)

From these two relations, it follows that

n = 1/2n B  and 00( ,n) = 1/2 f(n B  (53a,b)

Substituting equations (53a,b) into Equation (14) yields

f''' ] f f ' 0t =

B 2 B B (54.)

with boundary conditions given by

fB(o) = fB(0) = 0 (55a,b)

fB(nB - ) 1 (55c)

The result, as expected, is the well known Blasius solution.
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Turning now to the unsteady component and using u. qjol;r and

v°  -avo/ac, equation (15) can be written as

2 1 32 1  l 
a 1I+u + v °  (56)a n +  o n Vol an 6n

4l 3 l BPl

- Uo- _ a - -  = -art

where

f and vB - fB (57a,b)
B B B B

From equations (57) we see that in addition to the singularity in the pres-

sure gradient at 4 = 0, the coefficients also contain singularities. This

presents no additional difficulty, since at ; = 0 the corresponding stagna-

tion point boundary layer equations along with the pressure gradient given

by equation (51) are used to start the integration.

The temporal variation in equation (56) can be separated by the complex

exponential time factor. This is due to the linearity of the equation which

is a consequence of the small amplitude transverse oscillation. Represent-

ing the stream function and the pressure gradient in the complex plane as

l1(C,n,T) =T 1 (c,n)e i (58)

and

S(de i T (59)

and substituting these into equation (56) yields
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This equation could be integrated by a straightforward finite dif-

ference method, however a more flexible hybrid scheme is adopted. First,

the stream function and the pressure gradient are decomposed into their real

and inaginary parts, i.e., Y = T r + iv.. Then, only the (.-direction is

finite differenced according to

a n _ n-l

r _r r + O(A) (61)

Substituting these results into equation (60) yields the following two equa-

rions in n:

, v +(v U0 , +Uon

r 0 r on r + A r

dpr } n u0  I U0  n-6
+ O i If - r, 0x r -' T 1 (62)

1 Ti r Tc r

III It U

V i V o 1 i  + (v - _)Y + u°- n  y.O,T I 1 A4 1

dpin uo  u n-i
- r- - Or T.} (63)

with the following boundary conditions:

Ir r 0 at n - 0 (64a,b)

r -r Ur(4) as n - (64c)

Ir Fi = 0 at n = 0 (65a,b)

T'r U () as n 4 (65c)
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I

Equations (62) through (65) constitutes a well posed coupled boundary

value problem. Its solution is obtained by using a general purpose spline

collocation code. This particular integration scheme was selected because it

is more versatile, accurate and stable than a full finite difference

approach when solving parabolic equations. The accuracy is controlled by

the step size, 64, since the spline collocation integration in the n direc-

tion is essentially exact (relative error tolerance on the function can be

set at l0-7 without convergence difficulties). In addition, as A - 0 the

finite difference characteristics approach the continuum characteristics

which are normal to the C axis. A final justification for adopting this

scheme over full finite difference methods lies in its ability to easily

incorporate moving boundaries. Recall that in the present formulation, the

boundary conditions are applied to the mean position, i.e. Y = 0, of the

oscillating airfoil. However, it would be of interest in future investiga-

tions to study the effect of applying the boundary condition to the moving

surface while holding all other parameters constant. This would then

require only slight modifications to the boundary layer code whereas for

full finite difference methods moving boundaries would introduce major

complications.

Before discussing the results of the numerical solution of equations

(62) through (65) the equations valid in the neighborhood of C= 0 will be

developed. The solution of these stagnation point equations will provide

the starting profile for the boundary layer calculations.

4.2 Leading Edge Solution.

The flow field near the leading edge is described by equations (14)

through (17) along with the potential flow results of Section 3.2. The same
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procedure used in the previous section will be followed in obtaining solu-

tions for both the steady and unsteady flows. For the steady flow, the edge

velocity near = 0 is given by Ue = 2U~x/R. Equation (14) can be rewritten

if we define the following nondimensional variables:

y 6x6
H =/ H/2 ' "H ' - /? (66)

vR/2U R H (2RU

The edge velocity suggests that 4H be wrttten as H = cHfH(nH) Comparing

equations (7) and (66) we see that

1H2m/2 -1/2
= 2m 1/ , 4H = 2m; , = ;H f H (67)

Substituting equations (67) into equation (15) yields

III II 1

f + f f - f 2 (68)
H HH H +1I= 0

with the following boundary conditions

I

fH(o) = fH (o) = 0 (69a,b)

fH (nH +) (69c)

The solution as expected is the two dimensional Hieminz stagnation point

flow.

The corresponding unsteady equation can be obtained by first noting

that

Uo = fH and vo -fH (70a,b)

27



1.

Now writing 0I1 and P1 as W e(nlei  and Pl(0Ie i we obtain

the equation for the stagnation point region given by
d +4m d 1 1/ d2~

d&' di1 112 d d dO
Un f 2m H 3-l d-l (71)

Notice that equation (71) is an ordinary differential equation whereas equa-

tion (60) is a partial differential equation. This is due to the fact that

U1 = i e which is independent of c. Equation (71) now represents a

boundary vaiue problem where the boundary conditions are

*i(0) Y01 0 (72a,b)

and

*(72c)

The solution is accomplished as before by using a general purpose spline

collocation code to find V This is then used as the starting'profile for

the unsteady boundary layer solution. The details of the procedure can be

found in the Appendix A.

4.3 Results and Discussion

As stated in the Introduction, the objective of this investigation is

* to compare the unsteady surface shear stress created on a thin airfoil

undergoing transverse oscillations to that created by a transverse oscil-

lating flow field. In both cases, a steady uniform flow approaches the

airfoil from far upstream. Also, as discussed in the Introduction, the

transverse oscillation is created by a wind tunnel with a time varying wall

porosity. Thusthe actual spatial distribution of this velocity field
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that the airfoil experiences will in general be a function of L/H,M., and

the entrance length from the beginning of the porous section to the leading

edge of the airfoil. Typical results of the spatial distribution calculated

by incompressible potential theory are shown in Figure 6. The details of

this solution are outlined in Appendix B. In this figure, the transverse

velocity at the tunnel centerline is shown for various values of L/H, with-

out any obstructions in the test section. It is obvious that the parameter

L/H has a strong influence on the spatial distribution. For L/H - I the

distribution is approximately Cos x whereas for L/H -- the spatial distribu-

tion becomes uniform.

Subsonic compressible flow distributions are shown in Figure 7 from

Ref. [43 for purposes of comparison. In this case the Mach number is an

additional parameter, and the two curves become identical as M, - 0 as ex-

pected.

Once the various parameters, i.e. L/H and the entrance length, are fix-

ed the spatial and temporal transverse velocity at the tunnel centerline is

taken as an input for the boundary layer calculations. Obviously, the

presence of the airfoil will slightly alter this distribution, however

in the present analysis, this "blockage" effect was neglected. It can be

argued that this does not represent a serious limitation in the present

analysis since other effects such as tunnel wall boundary layers, non uni-

formity of the tunnel wall porosity, three dimensional effects, and higher

harmonies created by the actual oscillating flow would be ignored in a po-

tential flow analysis which included the presence of the thin airfoil. In

any case, the present boundary layer analysis would still be applicable

since only the free stream pressure gradient and edge velocity would be

altered and this is treated as simply a boundary condition in the present

study.
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As noted above, in the limit as L/H goes to infinity, the centerline

transverse velocity becomes uniform and equal in magnitude to the wall velo-

city. For this condition the oscillating flow field yields the same un-

steady pressure gradient and edge velocity (and hence the same shear stress

behavior) as the oscillating airfoil except in the leading edge region.

This discrepancy in the L.E. region is due to the mathematical artifice

employed to remove the leading edge singularity and start the boundary layer

calculations. Even with the discrepancy at the leading edge, the relative

difference of integrated shear stress for the oscillating airfoil vs. uni-

form oscillating transverse flow is less than 1%. Consequently, only the

effect of a nonuniform spatial distribution in the transverse velocity needs

to be considered.

A spatial distribution given by h(X) = Cos X was selected for compari-

son with the case of an airfoil oscillating in a uniform flow. This repre-

sents one the worst possible conditions created by a zero entrance Length,

Le, and L/H near unity. In both cases the frequency and amplitude are

identical. Typical boundary layer velocity profiles for the two cases for

various values of a are shown in Figures 8 and 9, at the 50% chord location.

Notice that for the oscillating airfoil, the free stream disturbance velocity

monotonically approaches zero as a approaches zero. This is apparent from

the form of the pressure gradient given by equation (35) whereas for the

oscillating free stream this is not true. Also notice as a approaches zero,

the velocity profiles in Figure 9 contain very little "overshoot", i.e. the

maximum value is approximately the same as the free stream value. This is to

be expected since a 10 implies a quasi-steady flow in the boundary layer.

And, finally, notice that the unsteady boundary layer thickness is approxi-

mately equal to the Blasius boundary layer, i.e. n a 5. This is a conse-
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quence of the scaling employed such that when a = 0[1], 6s/6B = O[1 at the

mid chord location.

The results of most interest are shown in Figure 10. This represents

the integrated non-dimensional wall shear stress as a function of the non-

dimensional frequency, a, for both the oscillating airfoil and the oscil-

lating free stream. As expected both curves go through the orgin, since

a = 0 implies no oscillation. Notice that for large values of a, both

curves asymptotically approach a constant value and the integrated shear

stress for the oscillating airfoil is approximately 20% less than that for

an oscillating free stream. However, this limit must be interpreted

cautiously since a was restricted to be 0[l] in the perturbation analysis.
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5.0 APPENDIXES

Appen dix A

The system of equations given by (62) and (63) along with boundary

conditions (64) and (65) represents a coupled set of third order idary

value problems. The solution of this set yields the first order urgte

disturbance for either an oscillating airfoil or a fixed airfo4 Y, i,

oscillating transverse free stream. [he difference between the two

being the unsteady pressure gradient in (62) and (63) and the unsteady euge

velocity in (64c) and (65c). For purposes of this discussion, the

equations are written as

p r Y r I r' ' 9r' I i)  (A.)

I l!

YT' f2 n  Ti , Yi Ti s Tr (A .2)

This set of equations is solved by the use of a general purpose

boundary value code known as COLSYS. This code uses the method of spline-

collocation at Gaussian points and is described in detail in reference

[10]. Only the main "driver" for this code along with the details for

obtaining the local inviscid unsteady pressure gradient is discussed in

this section.

The four subroutines unique to the COLSYS code are: FSUB, DFSUB,

GSUB, and DGSUB. FSUB is the subroutine for evaluating fI and f2 at each

n in the interval 0 < n < n_. DFSUB is the subroutine for evaluating the

Jacobian of fI and f2 at each n. And similarly,GSUB and DGSUB determine

the appropriate boundary conditions and the Jacobian respectively.
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The subroutine A determines the an coefficients in equation (44)

which are given by (40) and (41). And, finally, the subroutine BC

determines the edge velocities U r and Ui by solving the perturbation

form of equation (9), which is

~p 1 + u (A.3)

Separating out the periodic component, i.e. e , (A.3) can be

written in integral form as

U -e i  Jot ei'O d (A.4)

This equation is then integrated using the Gaussian quadrature subroutine

QGIO.

A highly schematized diagram of this procedure plus a listing of the

driver program is given next.
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Appendix B

The actual flow field induced by temporal variations of the test

section wall porosity to an otherwise imcompressible uniform wind tunnel

flow is a function of the Reynolds number, entrance length (Le), L/H, and

the geometry of the model in the test section. Other effects such as free

stream turbulence, the details of the flow through the porous section and

the frequency of oscillation can be important. However, a reasonable ap-

proximation to the unsteady oscillations can be obtained in analytical form

if a potential flow model is adopted. This is the same basic restriction

employed in reference [4].

Refering to Figure 11, and considering the effect of the variable wall

porosity without any obstructions in the test section, the potential function

is given by solving

V2 (B.)

subject to the followinq boundary conditions

V0 (x) Cos wt , -L<x<L

y , x ~J=.(B.2)ay : ,H -

U and 0 as JxI (B.3)
ax 0 a

The solution to this system of equations can be found in closed form

by using the Fourier Transform Method. First writing O(x,y,t) = s(X,y) Cos wt,

as a consequence of linearity of the system, and then introducing the Fourier
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transform defined below.

+0.,

C(s,y) (- P J~s(x,y)eisx dx (B.4)

The original system of equations becomes

d24) s 2  (D 0 (B.5)

dy 2

with the boundary condition

dyP Vo(s) (B.6)dy =O,H 0

where

+ (

V (s) iVo(X) e-isx dx (B.7)

Solving for d4/dy, which is the variable of interest, we obtain

d_ = V (s) Sinh sy + Sinh s(H-y) (B.8)
dy o Sinh sH

Taking the inverse transform and using (B.7) yields
+1/2 + CO

s I V2 Sinh s  + Sinh s(H-y) eis(x-&) ds d  (B9)

ay 2w J 0( i Sinh sHeds'd(.9

-1/2 -O

Integrating (B.9) with respect to the transform variable s, yields
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(H- (L1 v (r) dErIs Sin 7(H-y
IH Coh (x4, + Cos

-1i2 H H

+ Ji H__ Co0 (B. 10)

-'-/2 C osh Hf~x H o T

This is as far as the solution can be taken for arbitrary values of

V 0 (0. However, for the uniform porosity situation, i.e. V0  constant,

the solution can be found in closed form.

The final form, although lengthy, has certain advantages over a

numerical solution and is given below, for lxI< L,/Z

a s {0 Sin - B+A + Sin -' I A

+ Sin 1  - + Sin 1 1- V0 (BlB CJ

where

A± Cos l-Cosh 7~ LH 2Hx~

-i Cosh j(x + L) + Cos

2 H
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Similarly, for the region Ix I <L the y-component of velocity is

given by

30s = Vo I I+A- Sin-I I+A+S- _- Sin " I
. + S C+

+ Sin-1 1-A- Sin - I -A (B.12)

B C-

The results for various values of L/H are shown in Figure 6.

wI,
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Figure 1. Airfoil geometry and coordinate system
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Figure 2.a. Oscillating airfoil in a uniform stream
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Figure 2.b. Fixed airfoil with an oscillating transverse flow
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Figure 4. Conformal mapping of line segment into a circle
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Figure 5. Circular cylinder oscillating in a uniform flow
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Figure 6. Spatial distribution of transverse velocity at wind tunnel centerline
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Longitudinal distribution of flow angle amplitude for
a symmetric ball-wall installation, L/i= 1.0.
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Longitudinal distribution of flow angle amplitude
for a symmetric ball-wall installation, L/l4 3.0.

Figure 7. Spatial distribution for subsonic compressible flow from reference [4]

51



6.0

4.0.

3.0 --

2.0.

4.1 .0

1.01

. 0-~~ .4 .8 1. -

- 252



5.0 -

4.04..

3.0

2. - I

1.0.

2. 0 4. . .

Figure 8b. Imaginary part of the complex velocity for the
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Figure 10. Nondiniensional integrated shear stress vs. nondimensional
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